

Functional Description

The ABT16374 consists of sixteen edge-triggered flip-flops with individual D-type inputs and 3-STATE true outputs. The device is byte controlled with each byte functioning identically, but independent of the other. The control pins can be shorted together to obtain full 16 -bit operation. Each byte has a buffered clock and buffered Output Enable common to all flip-flops within that byte. The description which follows applies to each byte. Each flip-flop will store the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock $\left(\mathrm{CP}_{\mathrm{n}}\right)$ transition. With the Output Enable $\left(\overline{\mathrm{OE}}_{n}\right)$ LOW, the contents of the flip-flops are available at the outputs. When OE_{n} is HIGH, the outputs go to the high impedance state. Operation of the OE_{n} input does not affect the state of the flip-flops.

Truth Tables

Inputs			Outputs
CP_{1}	$\overline{\mathrm{OE}}_{1}$	$\mathrm{D}_{0}-\mathrm{D}_{\mathbf{7}}$	$\mathrm{O}_{0}-\mathrm{O}_{\mathbf{7}}$
\sim	L	H	H
\sim	L	L	L
L	L	X	(Previous)
X	H	X	Z

Inputs			Outputs
$\mathrm{CP}_{\mathbf{2}}$	$\overline{\mathrm{OE}}_{\mathbf{2}}$	$\mathrm{D}_{\mathbf{8}}-\mathrm{D}_{\mathbf{1 5}}$	$\mathrm{O}_{\mathbf{8}}-\mathrm{O}_{\mathbf{1 5}}$
\sim	L	H	H
\sim	L	L	L
L	L	X	(Previous)
X	H	X	Z

= HIGH Voltage Level
$=$ LOW Voltage Level
$\mathrm{X}=$ Immaterial
Z = High Impedance

Logic Diagrams

DC Electrical Characteristics

Symbol	Parameter	Min	Typ	Max	Units	V_{cc}	Conditions
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Voltage	2.0			V		Recognized HIGH Signal
V_{IL}	Input LOW Voltage			0.8	V		Recognized LOW Signal
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage			－1．2	V	Min	$\mathrm{l}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	2.5			V	Min	$\mathrm{IOH}=-3 \mathrm{~mA}$
		2.0			V	Min	$\mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage			0.55	V	Min	$\mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA}$
I_{H}	Input HIGH Current			$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\mu \mathrm{A}$	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}(\text { Note } 3) \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \end{aligned}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test			7	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
IL	Input LOW Current			$\begin{aligned} & \hline-1 \\ & -1 \end{aligned}$	$\mu \mathrm{A}$	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}(\text { Note } 3) \\ & \mathrm{V}_{\mathrm{IN}}=0.0 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {ID }}$	Input Leakage Test	4.75			V	0.0	$\begin{aligned} & \mathrm{l}_{\mathrm{ID}}=1.9 \mu \mathrm{~A} \\ & \text { All Other Pins Grounded } \end{aligned}$
$\mathrm{I}_{\text {OzH }}$	Output Leakage Current			10	$\mu \mathrm{A}$	0－5．5V	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V} ; \overline{\mathrm{OE}}=2.0 \mathrm{~V}$
Iozl	Output Leakage Current			－10	$\mu \mathrm{A}$	0－5．5V	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V} ; \overline{\mathrm{OE}}=2.0 \mathrm{~V}$
Ios	Output Short－Circuit Current	－100		－275	mA	Max	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$
$\mathrm{I}_{\text {cex }}$	Output HIGH Leakage Current			50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {cc }}$
lzz	Bus Drainage Test			100	$\mu \mathrm{A}$	0.0	$\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$ ；All Others $\mathrm{V}_{\text {CC }}$ or GND
${ }^{\text {I CCH }}$	Power Supply Current			2.0	mA	Max	All Outputs HIGH
${ }^{\text {ICCL }}$	Power Supply Current			62	mA	Max	All Outputs LOW
$\mathrm{I}_{\text {ccz }}$	Power Supply Current			2.0	mA	Max	$\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{CC}} ;$ All Others at V_{CC} or GND
${ }^{\text {CCT }}$	Additional $\mathrm{I}_{\mathrm{CC}} /$ Input Outputs Enabled Outputs 3－STATE Outputs 3－STATE			$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	Max	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V} \\ & \text { Enable Input } \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V} \\ & \text { Data Input } \mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V} \\ & \text { All Others at } \mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \hline \end{aligned}$
$\overline{\mathrm{ICCD}}$	Dynamic I_{CC} No Load （Note 3）			0.30	$\begin{aligned} & \hline \mathrm{mA} / \\ & \mathrm{MHz} \end{aligned}$	Max	$\begin{aligned} & \hline \text { Outputs Open } \\ & \overline{\mathrm{OE}}=\mathrm{GND},(\text { Note 4) } \\ & \text { One Bit Toggling, 50\% Duty Cycle } \\ & \hline \end{aligned}$
Note 3：Guaranteed，but not tested． Note 4：For 8－bit toggling， $\mathrm{I}_{\mathrm{CCD}}<0.8 \mathrm{~mA} / \mathrm{MHz}$ ．							

AC Electrical Characteristics							
Symbol	Parameter	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
		Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	150			150		MHz
$\overline{t_{\text {PLH }}}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay CP to O_{n}	$\begin{aligned} & \hline 1.8 \\ & 1.8 \end{aligned}$		$\begin{aligned} & \hline 6.2 \\ & 5.9 \end{aligned}$	$\begin{aligned} & \hline 1.8 \\ & 1.8 \end{aligned}$	$\begin{aligned} & \hline 6.2 \\ & 5.9 \end{aligned}$	ns
$\begin{aligned} & \overline{\mathrm{t}_{\text {PZH }}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time	$\begin{aligned} & \hline 1.2 \\ & 1.6 \end{aligned}$		$\begin{aligned} & \hline 5.6 \\ & 5.3 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.6 \end{aligned}$	$\begin{aligned} & \hline 5.6 \\ & 5.3 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time	$\begin{aligned} & \hline 2.2 \\ & 2.2 \end{aligned}$		7.1 6.6	$\begin{aligned} & 2.2 \\ & 2.2 \end{aligned}$	$\begin{aligned} & \hline 7.1 \\ & 6.6 \end{aligned}$	ns

AC Operating Requirements

Symbol	Parameter	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
		Min	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{S}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{S}}(\mathrm{~L}) \end{aligned}$	Setup Time, HIGH or LOW D_{n} to CP	$\begin{aligned} & 1.1 \\ & 1.1 \end{aligned}$		$\begin{aligned} & 1.1 \\ & 1.1 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{H}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{H}}(\mathrm{~L}) \end{aligned}$	Hold Time, HIGH or LOW D n to CP	$\begin{aligned} & 1.3 \\ & 1.3 \end{aligned}$		$\begin{aligned} & 1.3 \\ & 1.3 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{W}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{W}}(\mathrm{~L}) \end{aligned}$	Pulse Width, CP HIGH or LOW	$\begin{aligned} & \hline 3.0 \\ & 3.0 \end{aligned}$		$\begin{aligned} & \hline 3.0 \\ & 3.0 \end{aligned}$		ns

Capacitance

Symbol	Parameter	Typ	Units	Conditions $\left(T_{\mathbf{A}}=\mathbf{2 5}^{\circ} \mathbf{C}\right)$
C_{IN}	Input Capacitance	5.0	pF	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$
$\mathrm{C}_{\text {OUT }}($ Note 5)	Output Capacitance	11.0	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
Note 5: $\mathrm{C}_{\mathrm{OUT}}$ is measured at frequency $\mathrm{f}=1 \mathrm{MHz}$, per MIL-STD-883, Method 3012.				

Note 5: $\mathrm{C}_{\text {OUT }}$ is measured at frequency $\mathrm{f}=1 \mathrm{MHz}$, per MIL-STD-883, Method 3012.

Physical Dimensions inches（millimeters）unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide Package Number MTD48

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
